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Summary

Drosophila embryonic dorsal-ventral polarity is generated by

a series of serine protease processing events in the egg peri-
vitelline space. Gastrulation Defective processes Snake,

which then cleaves Easter, which then processes Spätzle
into the activating ligand for the Toll receptor [1–3]. seele

was identified in a screen for mutations that, when homozy-
gous in ovarian germline clones, lead to the formation of pro-

geny embryos with altered embryonic patterning; maternal

loss of seele function leads to the production of moderately
dorsalized embryos [4]. By combining constitutively active

versionsofGastrulationDefective,Snake,Easter, andSpätzle
with loss-of-function alleles of seele, we find that Seele

activity is dispensable for Spätzle-mediated activation of
Toll but is required for Easter, Snake, andGastrulationDefec-

tive to exert their effects on dorsal-ventral patterning. More-
over, Seele function is required specifically for secretion of

Easter fromthedevelopingembryo into theperivitellinespace
and for Easter processing. Seele protein resides in the endo-

plasmic reticulum of blastoderm embryos, suggesting a role
in the trafficking of Easter to the perivitelline space, prerequi-

site to its processing and function. Easter transport to the
perivitelline space represents a previously unappreciated

control point in the signal transduction pathway that controls
Drosophila embryonic dorsal-ventral polarity.

Results and Discussion

Seele/CG12918 Is Required for Normal Embryonic
Dorsal-Ventral Patterning

Using deficiencymapping, wemapped seele to polytene chro-
mosome interval 46D7–46D9. Sequence analysis of genomic
DNA from a seele282 allele-bearing stock identified a G-to-A
transition affecting the 30 splice acceptor site of the first intron
of the annotated gene CG12918 (Figure 1A). A second allele,
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seelef04527, carries a PiggyBac transposon insertion in the
second intron of CG12918 [5]. Sixty percent (680 of 1124) of
the embryonic cuticles produced by females homozygous
for seelef04527 exhibited ventral denticles of narrower than
normal width (Figure 1D) and the dorsolaterally derived
tracheal structures referred to as Filzkörper (Figure 1E), a
phenotype characterized asmoderately severe (the D2 pheno-
type) [6]. Thirty-nine percent (438 of 1124) of cuticles lacked
denticles but produced Filzkörper, the strongly dorsalized
(D1) phenotype (Figure 1F), and fewer than 1% (2 of 1124) of
embryos were completely dorsalized, lacking both ventral
denticles and Filzkörper, like embryos produced by dorsal
group null mutant females (Figure 1C). Finally, fewer than 1%
(4 of 1124) of the progeny displayed the weakest phenotype
(D3), in which the embryos had ventral denticle bands of
normal width and Filzkörper but exhibited a tail-up or twisted
phenotype. Consistent with their moderate and strongly dor-
salized phenotypes, embryos produced by seele mutant
females exhibited appropriately polarized gastrulation move-
ments (Figure 1H). Also consistent with these phenotypes,
embryos from seelef04527 mutant females failed to stain for
the ventral mesodermalmarker Twist (Figure 1K) [7]. The ability
of injected in vitro-synthesized RNA encoding the CG12918
open reading frame to rescue the progeny of seele mutant
females confirmed that CG12918 corresponds to the seele
locus. Following injection of 48 cleavage/blastoderm-stage
embryos produced by seelef04527/Df(2R)X3 mutant females
with seele RNA at a concentration of 0.5 mg/ml, 13 embryos
hatched (Figure 1G), and 5 embryos exhibited the weak D3
phenotype. None of 68 cleavage/blastoderm-stage embryos
injected with water hatched or exhibited the D3 phenotype.

seele Encodes a Member of the Saposin-like

Class of Proteins
CG12918encodesaputativeproteinproduct of 189 amino acids
with a predicted molecular weight of 21.3 kDa that exhibits
significant amino acid sequence similarity to the saposin-like
proteins (SAPLIPs), a group of proteins found in a diverse range
of organisms [8] (see Figure S1 available online). Notably, Seele
carries six conserved cysteine residues characteristic of all
SAPLIPS (see Figure S1). Seventeen amino acids at the amino
terminus of the protein are likely to act as a secretory signal
peptide, whereas the carboxyl terminus of the protein bears
four amino acids, KEEL, which are known to act as an endo-
plasmic reticulum (ER) retention signal inDrosophila [9]. Among
the known SAPLIPs, Seele is most similar to two vertebrate
proteins, the putative zebrafish orthologs of which are Canopy1
and Canopy2 (MSAP in mammals) [10, 11]. Seele is more
distantly related to twoadditional zebrafish/vertebrateSAPLIPs,
Canopy 3 and Canopy 4 (PRAT4A and PRAT4B in mammals)
[12, 13]. The product of the Drosophila gene CG11577 appears
to be the bona fide fly ortholog of both Canopy3 and Canopy4.

Seele Protein Is Present in the Endoplasmic Reticulum

of Blastoderm Embryos
Western blot analysis of extracts of embryos from wild-type
females using an antibody against Seele detected a protein
of about 28 kDa that was not seen in seele mutant-derived
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Figure 1. seele/CG12918 Is Required Maternally for the Establishment of

Drosophila Embryo Dorsal-Ventral Polarity

(A) Diagram of the exon/intron structures of seele/CG12918 and the two

nearby genes CG2264 and CG2249, and the position of the sel2R282-19

(sel282) and self04257 mutations.

(B) Wild-type cuticle.

(C) D0 class cuticle from snake1/snake2 mutant mother.

(D) D2 class cuticle from self04257/self04257 mutant mother showing ventral

denticle bands of narrow width.

(E) The same D2 class cuticle as in (D) photographed at a different focal

depth and showing the position of Filzkörper.

(F) D1 class cuticle from self04257/self0425 7mutant mother.

(G) Rescued self04257/self04257-derived embryo that was injected with

in vitro-synthesized seele RNA.

(H) Gastrulating embryo from self04257/self04257mutant mother.

(I) Gastrulating embryo from snake1/snake2 mutant mother.

(J) Anti-Twist staining of a gastrulating embryo from a self04257/+ mutant

mother.

(K) Anti-Twist staining of a gastrulating embryo from a self04257/self04257

mutant mother.

In (D)–(F), arrowheads indicate the position of ventral denticle belts and

arrows indicate the position of Filzkörper. Maternal genotypes are shown

at bottom left. The cuticles in (B) and (G) were photographed at half the

magnification of (C)–(F). See also Figure S1.
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embryos (Figure 2A). Similarly, blastoderm-stage wild-type
embryos stainedwith anti-Seele displayed a pattern of expres-
sion (Figure 2B) that was absent from blastoderm embryos
produced by seele mutant females (Figure 2C). In late-stage
embryos, a more complex pattern of zygotic expression was
seen, which included abundant expression in the developing
salivary glands (Figure 2D); late-stage embryos produced
by seelef04527/seelef04527 mothers that had been fertilized
by wild-type males also expressed Seele in various tissues,
including structures that correspond to developing salivary
glands (Figure 2E). No Seele was detected in embryos from
seelef04527/seelef04527 mothers that had been fertilized by
seelef04527/seelef04527 males (data not shown).
When expressed in syncytial blastoderm embryos, the stage

at which dorsal-ventral patterning is occurring, a functional,
transgenic version of Seele fused to mCherry exhibited
considerable colocalization with a GFP-tagged version of
protein disulfide isomerase (PDI-GFP), an ER-resident protein
(Figures 2F–2H) [14]. Moreover, following fractionation of
extracts from syncytial blastoderm embryos by density-
gradient centrifugation [15], Seele was observed to cofraction-
ate with the ER protein BiP [16], but not with the Golgi protein
GM130 [17] (Figure 2I).

Seele Functions Upstream of Toll Activation by Spätzle

Females heterozygous for the dominant, ventralizing Toll9Q

allele, which are also homozygous for seelef0452, produce
progeny with cuticles bearing rings of ventral denticles
(Figure 3B), like the progeny of females carrying Toll9Q alone
(Figure 3A). These results indicate that the ventralizing signal
transmitted by activated Toll receptor does not require Seele
function and that Seele acts upstream of Toll. To extend these
findingsand todetermine thestep in thedorsal-ventral pathway
at which Seele acts, we generated transgenic, ventralizing
versions of Spätzle, Easter, Snake, and Gastrulation Defective
(GD) and examined the phenotypes of embryos produced by
seelemutant females expressing these constructs.
Nanos-Gal4VP16-mediated germline expression [18] of the

ventralizing SpätzleC106 derivative of Spätzle [19, 20] fused
in-frame to GFP, in either seelef04527/+ or seelef04527/seelef04527

females, led to the formation of lateralized progeny embryos
(Figures 3C and 3D) and hence to constitutive Toll activation.
This indicates that Seele functions upstream of Spätzle-medi-
ated activation of Toll. In contrast, whereas expression of the
two ‘‘preactivated’’ versions of Easter and Snake, EasterDN
[21] and SnakeDN [22], in the germline of seelef04527/+ females
led to the formation of apolar, lateralized embryos (Figures 3E
and 3G), seelef04527/seelef04527 females expressing either of
these transgenes produced strongly dorsalized (D1) progeny
(Figures 3F and 3H). The likely explanation for these observa-
tions is that Seele is required for Easter function, with the
epistasis of seele over SnakeDN resulting from the inability of
preactivated Snake to transmit its lateralizing signal in the
absence of downstream functional Easter. Finally, whereas
transgenic overexpression of GD-GFP protein in the germline
of seelef04527/+ females led to the formation of lateralized and
ventralizedprogeny (Figure3I),seelemutant femalesexpressing
this transgene produced dorsalized embryos (Figure 3J). Thus,
like EasterDN and SnakeDN, seele acts downstream of GD.

Seele Is Required for Easter-GFP Localization
and Processing

The ER localization of Seele and the epistasis analysis
described above led us to examine the distributions, within



Figure 2. Seele Protein Localizes to the Endo-

plasmic Reticulum

(A) Western blot analysis of 0- to 4-hr-old wild-

type (left lane) and self04257/self04257 mutant-

derived (right lane) embryo extracts probed with

anti-Seele antibody.

(B–E) Whole-mount immunohistochemical stain-

ing of a wild-type blastoderm (B), self04257/

self04257 mother-derived blastoderm (C), germ-

band-retracted-stage embryo from a wild-type

mother (D), and germband-retracted-stage

embryo from a self04257/self04257 mother fertilized

by a wild-type male (E). Arrowheads in (D) and (E)

indicate the position of embryonic salivary

glands.

(F–H) Confocal images of the cortical cytoplasm

at the surface of a wild-type syncytial blastoderm

embryo showing mCherry-Seele (F), PDI-GFP

(G), and a merged image of the two fluorescent

proteins (H). Arrowheads in (F)–(H) indicate posi-

tions of conspicuous overlap.

(I) Western blot analysis of membrane fractions

collected from a 10%–30% OptiPrep density-

gradient separation of membranes prepared

from syncytial blastoderm-stage wild-type

embryos. Blots were probed with antibodies

against the Golgi protein GM130, the ER protein

BiP, and Seele. The S and P lanes contain

aliquots of the supernatant and pellet, respec-

tively, obtained following the 100,000 3 g spin.

The pellet fraction was subsequently resus-

pended and fractionated on the OptiPrep

gradient.
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the egg, of previously generated GFP-tagged transgenic
versions of Easter, Spätzle, Snake, and GD [23] in the progeny
of seele mutant females. Following expression of GD-GFP,
Easter-GFP, and Spätzle-GFP in the germline of seelef04527/+
females, green fluorescence was detected in the perivitelline
space of progeny embryos (Figures 4A, 4C, and 4D, top
embryos). This fluorescence was most conspicuous in the
spaces generated between the eggshell and embryo produced
by folds in the embryonic membrane that form during gastrula-
tion. There was no change in the perivitelline localization
of GD-GFP and Spätzle-GFP in seelef04527/seelef04527 mutant
females (Figures 4A and 4D, bottom embryos). In contrast,
when Easter-GFP was expressed in seelef04527/seelef04527

mutant females, a dramatic decrease in green fluorescence
in the perivitelline space was observed (Figure 4C, bot-
tom embryo). Moreover, western blot analysis of embryonic
extracts obtained from females expressing Easter-GFP in
either a wild-type or a seelemutant background demonstrated
that the abundance of processedEaster-GFPwasdramatically
decreased in extracts of seelef04527/seelef04527 mutant-derived
embryos (Figure 4E, left panel). This is consistent with a situa-
tion in which Easter needs to be secreted into the perivitelline
space in order to undergo Pipe-dependent processing by
Snake.

In contrast to GD-GFP, Easter-GFP, and Spätzle-GFP, most
of the green fluorescence associated with transgenic Snake-
GFP was detected in the cytoplasm of embryos produced
by both seelef04527/+ and seelef04527/seelef04527 mothers (Fig-
ure 4B). The low levels of Snake-GFP present in the perivitel-
line space of wild-type-derived embryos precluded the deter-
mination of whether perturbation of Seele activity affects the
perivitelline levels of Snake-GFP. However, western blot anal-
ysis of Snake-GFP showed no difference in processing of the
protein in embryos from wild-type versus seele mutant
embryos (Figure 4E, middle panel), suggesting that Snake-
GFP localization and function are insensitive to the presence
or absence of Seele activity. Similarly, no alteration in the
pattern of processing of GD-GFP was observed in extracts
from wild-type-derived versus seelef04527/seelef04527-derived
embryos (Figure 4E, right panel).

Easter-GFP Localization and Processing Do Not Depend

on Toll
As noted above, Seele exhibits some structural similarity to the
zebrafish proteins Canopy3 and Canopy4, the mammalian
homologs of which, PRAT4A and PRAT4B, have been shown
to interact physically with and regulate the subcellular traf-
ficking of members of the Toll-related group of receptors
that operate during the innate immune response [12, 13, 24,
25]. This suggested the possibility that the effect of Seele
upon Easter-GFP secretion might be an indirect consequence
of a primary role for Seele in the trafficking of Toll to the
membrane, for example if Easter and Toll were to interact
physically during the secretion of Toll.
Wild-type embryos stained with an antibody against Toll

display a characteristic honeycomb-like staining pattern [26]
(Figure S2A) that is absent from the progeny of Toll mutant
females (Figure S2B). Embryos from seelef04527/seelef04527

mutant females exhibited a staining pattern that was indistin-
guishable from that of wild-type embryos (Figure S2C). More-
over, abundant Easter-GFP was present in the perivitelline
space of the progeny of females lacking Toll protein



Figure 3. seele Is Epistatic over easter, snake, and gastrulation defective

but Not Toll and spätzle

Maternal genotypes of mothers producing the progeny embryo cuticles

shown are as follows: Tl9Q/+ (A), sel278/sel278;Tl9Q/+ (B), self04257/+;

UAS-Spätzle-GFP/nos-Gal4:VP16 (C), self04257/self04257;UAS-Spätzle-GFP/

nos-Gal4:VP16 (D), self04257/+;UAS-EasterDN/nos-Gal4:VP16 (E), self04257/

self04257;UAS-EasterDN/nos-Gal4:VP16 (F), self04257/+;UAS-SnakeDN/

nos-Gal4:VP16 (G), self04257/self04257;UAS-SnakeDN/nos-Gal4:VP16 (H),

self04257/+;UAS-GD-GFP/nos-Gal4:VP16 (I), and self04257/self04257;UAS-GD-

GFP/nos-Gal4:VP16 (J). Arrowheads indicate the positions of ventral

denticle material; arrows indicate the position of Filzkörper.

Figure 4. Seele Is Required for Perivitelline Space Localization and

Processing of Easter

(A) GD-GFP in late gastrula embryos from self04257/+ (top) and self04257/

self04257 (bottom) mothers.

(B) Snake-GFP in blastoderm embryos from self04257/+ (top) and self04257/

self04257 (bottom) mothers. Abundant secretion of Snake-GFP is not de-

tected at blastoderm or later stages of development.

(C) Easter-GFP in early gastrula embryos from self04257/+ (top) and self04257/

self04257 (bottom) mothers.

(D) Spätzle-GFP in late gastrula embryos from self04257/+ (top) and self04257/

self04257 (bottom) mothers.

In (A)–(D), pairs of embryos were oriented adjacent to one another and

imaged and photographed simultaneously. For consistency of presentation,

in (A) and (C), the digital photographs were divided horizontally between

the embryos, and the images of the embryos were reversed so that the

self04257/+-derived embryo was above the self04257/self04257-derived

embryo. Arrowheads indicate positions at which secreted GFP-tagged

protein can be observed.

(E) Western blot analysis of Easter-GFP (Ea-GFP, left), Snake-GFP (Snk-

GFP, middle), and GD-GFP (right) processing in embryonic extracts from

wild-type and seele mutant mothers. ‘‘Z’’ and ‘‘C’’ indicate the zymogen

and cleaved forms of the proteins, respectively. Maternal genotypes are

shown above each lane. The processing of Easter-GFP is also shown in

extracts of progeny from Tl mutant mothers. The higher-molecular-weight

bands observed in the wild-type and Tl-derived extracts correspond to

cleaved, activated Easter-GFP species complexed to Spn27A. Identification

of the zymogen and cleaved forms of Ea-GFP, Snk-GFP, and GD-GFP is

described in [23]. See also Figure S2.
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(Figure S2D). Finally, Easter-GFP is processed normally in the
progeny of Toll null mutant females, as shown by western blot
analysis (Figure 4E). Together, these results indicate that the
trafficking of Toll to the embryonic plasma membrane does
not depend upon Seele and that neither the presence of
Easter-GFP in the perivitelline space nor its processing by
Snake depends on the trafficking of Toll to the embryonic
membrane.

Conclusions
Members of the SAPLIP class of proteins participate in a
variety of processes, including lipid metabolism, membrane
fusion, antimicrobial and cytolytic activity, apoptosis, neurite
outgrowth, and receptor signaling [8]. A common feature of
many of these proteins is their interaction with lipids [27–30].
Among the specific subgroup of SAPLIPs that includes Seele
are several vertebrate members that appear to play a role in
the subcellular trafficking of specific target proteins. Canopy1
is an ER-localized protein that influences fibroblast growth
factor (FGF) signaling at the midbrain/hindbrain boundary and
interacts physically with the extracellular domain of FGFR1
[10]. It may act as a molecule-specific molecular chaperone,
either in the maturation or the modification of FGFR1 or by
facilitating the localization of FGFR1 to membrane microdo-
mains with specific lipid compositions. Similarly, available
evidence suggests that the mammalian PRAT4A and PRAT4B
proteins act in the ER, either to facilitate the folding, matura-
tion, or assembly of their cognate TLR proteins or more
directly to regulate transit through the secretory pathway
[12, 13, 24, 25]. These data, together with our observations,
strongly suggest a role for Seele, acting in the lumen of the
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ER to control the localization and activity of Easter. Seele
could participate in the folding or maturation of Easter or alter-
natively could play a more direct role in Easter trafficking, by
accompanying Easter from the ER to the Golgi apparatus,
acting to mediate the selective uptake of Easter protein into
transport vesicles, or modifying the properties of transport
vesicles in which Easter resides.

Easter represents a key nexus of regulation of the dorsal
group signal transduction pathway. The ventrally restricted
step in the protease cascade is the Pipe-dependent activa-
tion of Easter by Snake [23, 31]. An additional layer of regula-
tory control of Easter is its interaction, following activation,
with the serine protease inhibitor Spn27A [32–34]. The pres-
ence of inhibitory proenzyme domains in the Snake and
Easter zymogens provides a means of preventing inappro-
priate activation of the two proteins during transit through
the secretory pathway of the embryo. Localization of Easter
to a specific class of secretory vesicles with a unique lipid
composition could provide an additional means of ensuring
that Easter is not precociously processed by Snake. Alterna-
tively, Seele-dependent folding, glycosylation, or matura-
tion of Easter could represent a way of preventing its preco-
cious processing by Snake. Elucidating the step during
secretory transit of Easter that is influenced by Seele and
the extent to which Seele physically interacts with Easter or
with membrane lipids should allow the determination of
which of these mechanisms Seele employs to regulate Easter
function.

Experimental Procedures

Stocks and Maintenance

All stocks weremaintained employing standard conditions and procedures.

Thewild-typeDrosophilamelanogaster stock usedwas aw/wmutant deriv-

ative of Oregon R. Stocks bearing the following mutations, transgenes, and

chromosomal deficiencies are described in more detail in the Supplemental

Experimental Procedures: sel282, snake1, snake2, Toll9Q, Tollrv13, Tollrv19 ,

PDI-GFP, Easter-GFP, EasterDN-GFP, GD-GFP, Snake-GFP, SnakeDN-

GFP, Spätzle-GFP, SpätzleC106-GFP, nos-Gal4:VP16, Df(2R)X1, Df(2R)X3,

Df(2R)stan1.

Plasmid Constructs

pUASp-EasterDN and pUASp-SnakeDN carry the catalytic domains of

Easter and Snake, respectively, lacking their prodomains and fused in-

frame to the Easter secretory signal peptide [35]. nos-Gal4:VP16-mediated

expression of these transgenes in the female germline [18] results in secre-

tion of active versions of the proteases. Details of the construction of these

transgenes, the transgene encoding the mCherry-Seele fusion protein, and

the pBP4-seele plasmid [36], which facilitates SP6 polymerase-mediated

in vitro synthesis of seelemRNA, are described in the Supplemental Exper-

imental Procedures.

Preparation of Antiserum Directed against Seele

For preparation of antiserum, the Seele open reading frame was introduced

into pET-15b (Novagen). His6-tagged Seele protein was then expressed in

E. coli BL21(DE3) under T7 RNA polymerase-directed transcriptional

control, purified by affinity chromatography under denaturing conditions,

and sent to Pocono Rabbit Farm and Laboratory Inc. (Canadensis, PA) for

the production of antibodies in guinea pigs.

Western Blot Analysis

For western blot analysis of Seele protein, 0- to 4-hr-old eggswere collected

on yeasted apple juice/agar plates, homogenized in sample buffer, and sub-

jected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Gel lanes

contained 30 mg of embryo extract. Following electroblotting onto nitrocel-

lulose membrane, blots were incubated with HRP-conjugated secondary

antibody, followed by detection with the Pierce SuperSignal detection

system. For the preparation of embryo extracts used in western blot anal-

ysis of Easter-GFP and Snake-GFP, in order to achieve uniformity in protein
concentrations, approximately 50 late-blastoderm-stage embryos were

collected by hand. For each embryo extract, a volume corresponding to

exactly 100 mg of protein was subjected to SDS-PAGE, followed by electro-

blotting and detection as described above.

Subcellular Fractionation of Seele

Membrane fractionation of syncytial blastoderm embryos was carried out

as described in [15]. Following low-speed centrifugation (3,000 3 g for

10 min) to remove debris and dense organelles, the resultant supernatant

was then subjected to high-speed centrifugation (100,000 3 g for 1 hr) to

pellet membranes. The membrane pellet was resuspended and subjected

to density-gradient centrifugation in a 10%–30% OptiPrep gradient (Accu-

rate Chemical and Scientific Corporation). Following centrifugation at

340,000 3 g for 3 hr, 0.25 ml fractions were collected. Aliquots of these

fractions were then examined by western blot analysis with antibodies

directed against Seele, the ER protein BiP, and the Golgi protein GM130,

respectively.

Examination of Embryonic Phenotypes

Gastrulating embryos were examined under Halocarbon oil 27 (Sigma Life

Sciences). Larval cuticles were prepared according to [37]. Examinations

of the distributions of Seele, Toll, and Twist proteins were carried out by

whole-mount immunostaining according to the protocol of [38]. For tests

of the influence of seele and Toll mutations on the distribution of GFP-

tagged fusions proteins, similar-stage embryos from wild-type and mutant

females were oriented adjacent to one another, and GFP-associated fluo-

rescence of the two embryos was imaged simultaneously.

Supplemental Information

Supplemental Information includes two figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.

1016/j.cub.2010.09.069.
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